Grassmanniennes affines tordues sur les entiers
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We generalize the works of Pappas–Rapoport–Zhu on twisted affine Grassmannians to the wildly ramified case under mild assumptions. This rests on a construction of certain smooth affine $\mathbb {Z}[t]$-groups with connected fibers of parahoric type, motivated by previous work of Tits. The resulting $\mathbb {F}_p(t)$-groups are pseudo-reductive and sometimes non-standard in the sense of Conrad–Gabber–Prasad, and their $\mathbb {F}_p [\hspace {-0,5mm}[ {t} ]\hspace {-0,5mm}] $-models are parahoric in a generalized sense. We study their affine Grassmannians, proving normality of Schubert varieties and Zhu’s coherence theorem.
@article{10_1017_fms_2023_4,
     author = {Jo\~ao Louren\c{c}o},
     title = {Grassmanniennes affines tordues sur les entiers},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.4/}
}
TY  - JOUR
AU  - João Lourenço
TI  - Grassmanniennes affines tordues sur les entiers
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.4/
DO  - 10.1017/fms.2023.4
LA  - en
ID  - 10_1017_fms_2023_4
ER  - 
%0 Journal Article
%A João Lourenço
%T Grassmanniennes affines tordues sur les entiers
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.4/
%R 10.1017/fms.2023.4
%G en
%F 10_1017_fms_2023_4
João Lourenço. Grassmanniennes affines tordues sur les entiers. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.4

Cité par Sources :