Remark on complements on surfaces
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We give an explicit characterization on the singularities of exceptional pairs in any dimension. In particular, we show that any exceptional Fano surface is $\frac {1}{42}$-lc. As corollaries, we show that any $\mathbb R$-complementary surface X has an n-complement for some integer $n\leq 192\cdot 84^{128\cdot 42^5}\approx 10^{10^{10.5}}$, and Tian’s alpha invariant for any surface is $\leq 3\sqrt {2}\cdot 84^{64\cdot 42^5}\approx 10^{10^{10.2}}$. Although the latter two values are expected to be far from being optimal, they are the first explicit upper bounds of these two algebraic invariants for surfaces.
@article{10_1017_fms_2023_35,
     author = {Jihao Liu},
     title = {Remark on complements on surfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.35},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.35/}
}
TY  - JOUR
AU  - Jihao Liu
TI  - Remark on complements on surfaces
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.35/
DO  - 10.1017/fms.2023.35
LA  - en
ID  - 10_1017_fms_2023_35
ER  - 
%0 Journal Article
%A Jihao Liu
%T Remark on complements on surfaces
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.35/
%R 10.1017/fms.2023.35
%G en
%F 10_1017_fms_2023_35
Jihao Liu. Remark on complements on surfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.35

Cité par Sources :