On sets with unit Hausdorff density in homogeneous groups
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
It is a longstanding conjecture that given a subset E of a metric space, if E has unit $\mathscr {H}^{\alpha }\llcorner E$-density almost everywhere, then E is an $\alpha $-rectifiable set. We prove this conjecture under the assumption that the ambient metric space is a homogeneous group with a smooth-box norm.
@article{10_1017_fms_2023_31,
author = {Antoine Julia and Andrea Merlo},
title = {On sets with unit {Hausdorff} density in homogeneous groups},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.31},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.31/}
}
Antoine Julia; Andrea Merlo. On sets with unit Hausdorff density in homogeneous groups. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.31
Cité par Sources :