On sets with unit Hausdorff density in homogeneous groups
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

It is a longstanding conjecture that given a subset E of a metric space, if E has unit $\mathscr {H}^{\alpha }\llcorner E$-density almost everywhere, then E is an $\alpha $-rectifiable set. We prove this conjecture under the assumption that the ambient metric space is a homogeneous group with a smooth-box norm.
@article{10_1017_fms_2023_31,
     author = {Antoine Julia and Andrea Merlo},
     title = {On sets with unit {Hausdorff} density in homogeneous groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.31},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.31/}
}
TY  - JOUR
AU  - Antoine Julia
AU  - Andrea Merlo
TI  - On sets with unit Hausdorff density in homogeneous groups
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.31/
DO  - 10.1017/fms.2023.31
LA  - en
ID  - 10_1017_fms_2023_31
ER  - 
%0 Journal Article
%A Antoine Julia
%A Andrea Merlo
%T On sets with unit Hausdorff density in homogeneous groups
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.31/
%R 10.1017/fms.2023.31
%G en
%F 10_1017_fms_2023_31
Antoine Julia; Andrea Merlo. On sets with unit Hausdorff density in homogeneous groups. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.31

Cité par Sources :