Wonderful compactifications and rational curves with cyclic action
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the moduli space of rational curves with cyclic action, constructed in our previous work, is realizable as a wonderful compactification of the complement of a hyperplane arrangement in a product of projective spaces. By proving a general result on such wonderful compactifications, we conclude that this moduli space is Chow-equivalent to an explicit toric variety (whose fan can be understood as a tropical version of the moduli space), from which a computation of its Chow ring follows.
@article{10_1017_fms_2023_26,
     author = {Emily Clader and Chiara Damiolini and Shiyue Li and Rohini Ramadas},
     title = {Wonderful compactifications and rational curves with cyclic action},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.26},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.26/}
}
TY  - JOUR
AU  - Emily Clader
AU  - Chiara Damiolini
AU  - Shiyue Li
AU  - Rohini Ramadas
TI  - Wonderful compactifications and rational curves with cyclic action
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.26/
DO  - 10.1017/fms.2023.26
LA  - en
ID  - 10_1017_fms_2023_26
ER  - 
%0 Journal Article
%A Emily Clader
%A Chiara Damiolini
%A Shiyue Li
%A Rohini Ramadas
%T Wonderful compactifications and rational curves with cyclic action
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.26/
%R 10.1017/fms.2023.26
%G en
%F 10_1017_fms_2023_26
Emily Clader; Chiara Damiolini; Shiyue Li; Rohini Ramadas. Wonderful compactifications and rational curves with cyclic action. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.26

Cité par Sources :