Negative moments of orthogonal polynomials
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

If a sequence indexed by nonnegative integers satisfies a linear recurrence without constant terms, one can extend the indices of the sequence to negative integers using the recurrence. Recently, Cigler and Krattenthaler showed that the negative version of the number of bounded Dyck paths is the number of bounded alternating sequences. In this paper, we provide two methods to compute the negative versions of sequences related to moments of orthogonal polynomials. We give a combinatorial model for the negative version of the number of bounded Motzkin paths. We also prove two conjectures of Cigler and Krattenthaler on reciprocity between determinants.
@article{10_1017_fms_2023_23,
     author = {Jihyeug Jang and Donghyun Kim and Jang Soo Kim and Minho Song and U-Keun Song},
     title = {Negative moments of orthogonal polynomials},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.23},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.23/}
}
TY  - JOUR
AU  - Jihyeug Jang
AU  - Donghyun Kim
AU  - Jang Soo Kim
AU  - Minho Song
AU  - U-Keun Song
TI  - Negative moments of orthogonal polynomials
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.23/
DO  - 10.1017/fms.2023.23
LA  - en
ID  - 10_1017_fms_2023_23
ER  - 
%0 Journal Article
%A Jihyeug Jang
%A Donghyun Kim
%A Jang Soo Kim
%A Minho Song
%A U-Keun Song
%T Negative moments of orthogonal polynomials
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.23/
%R 10.1017/fms.2023.23
%G en
%F 10_1017_fms_2023_23
Jihyeug Jang; Donghyun Kim; Jang Soo Kim; Minho Song; U-Keun Song. Negative moments of orthogonal polynomials. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.23

Cité par Sources :