An extension of Venkatesh’s converse theorem to the Selberg class
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We extend Venkatesh’s proof of the converse theorem for classical holomorphic modular forms to arbitrary level and character. The method of proof, via the Petersson trace formula, allows us to treat arbitrary degree $2$ gamma factors of Selberg class type.
            
            
            
          
        
      @article{10_1017_fms_2023_22,
     author = {Andrew R. Booker and Michael Farmer and Min Lee},
     title = {An extension of {Venkatesh{\textquoteright}s} converse theorem to the {Selberg} class},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.22},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.22/}
}
                      
                      
                    TY - JOUR AU - Andrew R. Booker AU - Michael Farmer AU - Min Lee TI - An extension of Venkatesh’s converse theorem to the Selberg class JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.22/ DO - 10.1017/fms.2023.22 LA - en ID - 10_1017_fms_2023_22 ER -
%0 Journal Article %A Andrew R. Booker %A Michael Farmer %A Min Lee %T An extension of Venkatesh’s converse theorem to the Selberg class %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.22/ %R 10.1017/fms.2023.22 %G en %F 10_1017_fms_2023_22
Andrew R. Booker; Michael Farmer; Min Lee. An extension of Venkatesh’s converse theorem to the Selberg class. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.22
Cité par Sources :
