Effective characterization of quasi-abelian surfaces
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera $\overline P_1(V)$, $\overline P_2(V)$ and $\overline P_3(V)$ are equal to 1 and the logarithmic irregularity $\overline q(V)$ is equal to $2$. We prove that the quasi-Albanese morphism $a_V\colon V\to A(V)$ is birational and there exists a finite set S such that $a_V$ is proper over $A(V)\setminus S$, thus giving a sharp effective version of a classical result of Iitaka [12].
@article{10_1017_fms_2023_2,
author = {Margarida Mendes Lopes and Rita Pardini and Sofia Tirabassi},
title = {Effective characterization of quasi-abelian surfaces},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.2/}
}
TY - JOUR AU - Margarida Mendes Lopes AU - Rita Pardini AU - Sofia Tirabassi TI - Effective characterization of quasi-abelian surfaces JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.2/ DO - 10.1017/fms.2023.2 LA - en ID - 10_1017_fms_2023_2 ER -
%0 Journal Article %A Margarida Mendes Lopes %A Rita Pardini %A Sofia Tirabassi %T Effective characterization of quasi-abelian surfaces %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.2/ %R 10.1017/fms.2023.2 %G en %F 10_1017_fms_2023_2
Margarida Mendes Lopes; Rita Pardini; Sofia Tirabassi. Effective characterization of quasi-abelian surfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.2
Cité par Sources :