Effective characterization of quasi-abelian surfaces
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Let V be a smooth quasi-projective complex surface such that the first three logarithmic plurigenera $\overline P_1(V)$, $\overline P_2(V)$ and $\overline P_3(V)$ are equal to 1 and the logarithmic irregularity $\overline q(V)$ is equal to $2$. We prove that the quasi-Albanese morphism $a_V\colon V\to A(V)$ is birational and there exists a finite set S such that $a_V$ is proper over $A(V)\setminus S$, thus giving a sharp effective version of a classical result of Iitaka [12].
@article{10_1017_fms_2023_2,
     author = {Margarida Mendes Lopes and Rita Pardini and Sofia Tirabassi},
     title = {Effective characterization of quasi-abelian surfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.2/}
}
TY  - JOUR
AU  - Margarida Mendes Lopes
AU  - Rita Pardini
AU  - Sofia Tirabassi
TI  - Effective characterization of quasi-abelian surfaces
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.2/
DO  - 10.1017/fms.2023.2
LA  - en
ID  - 10_1017_fms_2023_2
ER  - 
%0 Journal Article
%A Margarida Mendes Lopes
%A Rita Pardini
%A Sofia Tirabassi
%T Effective characterization of quasi-abelian surfaces
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.2/
%R 10.1017/fms.2023.2
%G en
%F 10_1017_fms_2023_2
Margarida Mendes Lopes; Rita Pardini; Sofia Tirabassi. Effective characterization of quasi-abelian surfaces. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.2

Cité par Sources :