Bordered Floer homology and contact structures
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We introduce a contact invariant in the bordered sutured Heegaard Floer homology of a three-manifold with boundary. The input for the invariant is a contact manifold $(M, \xi , \mathcal {F})$ whose convex boundary is equipped with a signed singular foliation $\mathcal {F}$ closely related to the characteristic foliation. Such a manifold admits a family of foliated open book decompositions classified by a Giroux correspondence, as described in [LV20]. We use a special class of foliated open books to construct admissible bordered sutured Heegaard diagrams and identify well-defined classes $c_D$ and $c_A$ in the corresponding bordered sutured modules.Foliated open books exhibit user-friendly gluing behavior, and we show that the pairing on invariants induced by gluing compatible foliated open books recovers the Heegaard Floer contact invariant for closed contact manifolds. We also consider a natural map associated to forgetting the foliation $\mathcal {F}$ in favor of the dividing set and show that it maps the bordered sutured invariant to the contact invariant of a sutured manifold defined by Honda–Kazez–Matić.
            
            
            
          
        
      @article{10_1017_fms_2023_19,
     author = {Akram Alishahi and Vikt\'oria F\"oldv\'ari and Kristen Hendricks and Joan Licata and Ina Petkova and Vera V\'ertesi},
     title = {Bordered {Floer} homology and contact structures},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.19},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.19/}
}
                      
                      
                    TY - JOUR AU - Akram Alishahi AU - Viktória Földvári AU - Kristen Hendricks AU - Joan Licata AU - Ina Petkova AU - Vera Vértesi TI - Bordered Floer homology and contact structures JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.19/ DO - 10.1017/fms.2023.19 LA - en ID - 10_1017_fms_2023_19 ER -
%0 Journal Article %A Akram Alishahi %A Viktória Földvári %A Kristen Hendricks %A Joan Licata %A Ina Petkova %A Vera Vértesi %T Bordered Floer homology and contact structures %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.19/ %R 10.1017/fms.2023.19 %G en %F 10_1017_fms_2023_19
Akram Alishahi; Viktória Földvári; Kristen Hendricks; Joan Licata; Ina Petkova; Vera Vértesi. Bordered Floer homology and contact structures. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.19
Cité par Sources :
