Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We consider the Euler characteristics $\chi (M)$ of closed, orientable, topological $2n$-manifolds with $(n-1)$-connected universal cover and a given fundamental group G of type $F_n$. We define $q_{2n}(G)$, a generalised version of the Hausmann-Weinberger invariant [19] for 4–manifolds, as the minimal value of $(-1)^n\chi (M)$. For all $n\geq 2$, we establish a strengthened and extended version of their estimates, in terms of explicit cohomological invariants of G. As an application, we obtain new restrictions for nonabelian finite groups arising as fundamental groups of rational homology 4–spheres.
            
            
            
          
        
      @article{10_1017_fms_2023_18,
     author = {Alejandro Adem and Ian Hambleton},
     title = {Minimal {Euler} characteristics for even-dimensional manifolds with finite fundamental group},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.18/}
}
                      
                      
                    TY - JOUR AU - Alejandro Adem AU - Ian Hambleton TI - Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.18/ DO - 10.1017/fms.2023.18 LA - en ID - 10_1017_fms_2023_18 ER -
%0 Journal Article %A Alejandro Adem %A Ian Hambleton %T Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.18/ %R 10.1017/fms.2023.18 %G en %F 10_1017_fms_2023_18
Alejandro Adem; Ian Hambleton. Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.18
Cité par Sources :
