Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider the Euler characteristics $\chi (M)$ of closed, orientable, topological $2n$-manifolds with $(n-1)$-connected universal cover and a given fundamental group G of type $F_n$. We define $q_{2n}(G)$, a generalised version of the Hausmann-Weinberger invariant [19] for 4–manifolds, as the minimal value of $(-1)^n\chi (M)$. For all $n\geq 2$, we establish a strengthened and extended version of their estimates, in terms of explicit cohomological invariants of G. As an application, we obtain new restrictions for nonabelian finite groups arising as fundamental groups of rational homology 4–spheres.
@article{10_1017_fms_2023_18,
     author = {Alejandro Adem and Ian Hambleton},
     title = {Minimal {Euler} characteristics for even-dimensional manifolds with finite fundamental group},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.18},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.18/}
}
TY  - JOUR
AU  - Alejandro Adem
AU  - Ian Hambleton
TI  - Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.18/
DO  - 10.1017/fms.2023.18
LA  - en
ID  - 10_1017_fms_2023_18
ER  - 
%0 Journal Article
%A Alejandro Adem
%A Ian Hambleton
%T Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.18/
%R 10.1017/fms.2023.18
%G en
%F 10_1017_fms_2023_18
Alejandro Adem; Ian Hambleton. Minimal Euler characteristics for even-dimensional manifolds with finite fundamental group. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.18

Cité par Sources :