Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We determine all the extremal Gromov-Witten invariants of the Hilbert scheme of $3$ points on a smooth projective complex surface. Our result for the genus-$1$ case verifies a conjecture that we propose for the genus-$1$ extremal Gromov-Witten invariant of the Hilbert scheme of n points with n being arbitrary. The main ideas in the proofs are to use geometric arguments involving the cosection localization theory of Kiem and J. Li [17, 23], algebraic manipulations related to the Heisenberg operators of Grojnowski [13] and Nakajima [34], and the virtual localization formulas of Gromov-Witten theory [12, 20, 30].
@article{10_1017_fms_2023_17,
     author = {Jianxun Hu and Zhenbo Qin},
     title = {Extremal {Gromov-Witten} invariants of the {Hilbert} scheme of $3$ {Points}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.17/}
}
TY  - JOUR
AU  - Jianxun Hu
AU  - Zhenbo Qin
TI  - Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.17/
DO  - 10.1017/fms.2023.17
LA  - en
ID  - 10_1017_fms_2023_17
ER  - 
%0 Journal Article
%A Jianxun Hu
%A Zhenbo Qin
%T Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.17/
%R 10.1017/fms.2023.17
%G en
%F 10_1017_fms_2023_17
Jianxun Hu; Zhenbo Qin. Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.17

Cité par Sources :