Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We determine all the extremal Gromov-Witten invariants of the Hilbert scheme of $3$ points on a smooth projective complex surface. Our result for the genus-$1$ case verifies a conjecture that we propose for the genus-$1$ extremal Gromov-Witten invariant of the Hilbert scheme of n points with n being arbitrary. The main ideas in the proofs are to use geometric arguments involving the cosection localization theory of Kiem and J. Li [17, 23], algebraic manipulations related to the Heisenberg operators of Grojnowski [13] and Nakajima [34], and the virtual localization formulas of Gromov-Witten theory [12, 20, 30].
            
            
            
          
        
      @article{10_1017_fms_2023_17,
     author = {Jianxun Hu and Zhenbo Qin},
     title = {Extremal {Gromov-Witten} invariants of the {Hilbert} scheme of $3$ {Points}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.17},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.17/}
}
                      
                      
                    TY - JOUR AU - Jianxun Hu AU - Zhenbo Qin TI - Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.17/ DO - 10.1017/fms.2023.17 LA - en ID - 10_1017_fms_2023_17 ER -
Jianxun Hu; Zhenbo Qin. Extremal Gromov-Witten invariants of the Hilbert scheme of $3$ Points. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.17
Cité par Sources :
