Approximate and discrete Euclidean vector bundles
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We introduce $\varepsilon $-approximate versions of the notion of a Euclidean vector bundle for $\varepsilon \geq 0$, which recover the classical notion of a Euclidean vector bundle when $\varepsilon = 0$. In particular, we study Čech cochains with coefficients in the orthogonal group that satisfy an approximate cocycle condition. We show that $\varepsilon $-approximate vector bundles can be used to represent classical vector bundles when $\varepsilon> 0$ is sufficiently small. We also introduce distances between approximate vector bundles and use them to prove that sufficiently similar approximate vector bundles represent the same classical vector bundle. This gives a way of specifying vector bundles over finite simplicial complexes using a finite amount of data and also allows for some tolerance to noise when working with vector bundles in an applied setting. As an example, we prove a reconstruction theorem for vector bundles from finite samples. We give algorithms for the effective computation of low-dimensional characteristic classes of vector bundles directly from discrete and approximate representations and illustrate the usage of these algorithms with computational examples.
@article{10_1017_fms_2023_16,
     author = {Luis Scoccola and Jose A. Perea},
     title = {Approximate and discrete {Euclidean} vector bundles},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.16},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.16/}
}
TY  - JOUR
AU  - Luis Scoccola
AU  - Jose A. Perea
TI  - Approximate and discrete Euclidean vector bundles
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.16/
DO  - 10.1017/fms.2023.16
LA  - en
ID  - 10_1017_fms_2023_16
ER  - 
%0 Journal Article
%A Luis Scoccola
%A Jose A. Perea
%T Approximate and discrete Euclidean vector bundles
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.16/
%R 10.1017/fms.2023.16
%G en
%F 10_1017_fms_2023_16
Luis Scoccola; Jose A. Perea. Approximate and discrete Euclidean vector bundles. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.16

Cité par Sources :