PL-Genus of surfaces in homology balls
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We consider manifold-knot pairs $(Y,K)$, where Y is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface $\Sigma $ in a homology ball X, such that $\partial (X, \Sigma ) = (Y, K)$ can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from $(Y, K)$ to any knot in $S^3$ can be arbitrarily large. The proof relies on Heegaard Floer homology.
@article{10_1017_fms_2023_126,
author = {Jennifer Hom and Matthew Stoffregen and Hugo Zhou},
title = {PL-Genus of surfaces in homology balls},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2023.126},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.126/}
}
TY - JOUR AU - Jennifer Hom AU - Matthew Stoffregen AU - Hugo Zhou TI - PL-Genus of surfaces in homology balls JO - Forum of Mathematics, Sigma PY - 2024 VL - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.126/ DO - 10.1017/fms.2023.126 LA - en ID - 10_1017_fms_2023_126 ER -
Jennifer Hom; Matthew Stoffregen; Hugo Zhou. PL-Genus of surfaces in homology balls. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.126
Cité par Sources :