PL-Genus of surfaces in homology balls
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider manifold-knot pairs $(Y,K)$, where Y is a homology 3-sphere that bounds a homology 4-ball. We show that the minimum genus of a PL surface $\Sigma $ in a homology ball X, such that $\partial (X, \Sigma ) = (Y, K)$ can be arbitrarily large. Equivalently, the minimum genus of a surface cobordism in a homology cobordism from $(Y, K)$ to any knot in $S^3$ can be arbitrarily large. The proof relies on Heegaard Floer homology.
@article{10_1017_fms_2023_126,
     author = {Jennifer Hom and Matthew Stoffregen and Hugo Zhou},
     title = {PL-Genus of surfaces in homology balls},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2023.126},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.126/}
}
TY  - JOUR
AU  - Jennifer Hom
AU  - Matthew Stoffregen
AU  - Hugo Zhou
TI  - PL-Genus of surfaces in homology balls
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.126/
DO  - 10.1017/fms.2023.126
LA  - en
ID  - 10_1017_fms_2023_126
ER  - 
%0 Journal Article
%A Jennifer Hom
%A Matthew Stoffregen
%A Hugo Zhou
%T PL-Genus of surfaces in homology balls
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.126/
%R 10.1017/fms.2023.126
%G en
%F 10_1017_fms_2023_126
Jennifer Hom; Matthew Stoffregen; Hugo Zhou. PL-Genus of surfaces in homology balls. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.126

Cité par Sources :