Positivity of Schur forms for strongly decomposably positive vector bundles
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we define two types of strongly decomposable positivity, which serve as generalizations of (dual) Nakano positivity and are stronger than the decomposable positivity introduced by S. Finski. We provide the criteria for strongly decomposable positivity of type I and type II and prove that the Schur forms of a strongly decomposable positive vector bundle of type I are weakly positive, while the Schur forms of a strongly decomposable positive vector bundle of type II are positive. These answer a question of Griffiths affirmatively for strongly decomposably positive vector bundles. Consequently, we present an algebraic proof of the positivity of Schur forms for (dual) Nakano positive vector bundles, which was initially proven by S. Finski.
@article{10_1017_fms_2023_125,
     author = {Xueyuan Wan},
     title = {Positivity of {Schur} forms for strongly decomposably positive vector bundles},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2023.125},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.125/}
}
TY  - JOUR
AU  - Xueyuan Wan
TI  - Positivity of Schur forms for strongly decomposably positive vector bundles
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.125/
DO  - 10.1017/fms.2023.125
LA  - en
ID  - 10_1017_fms_2023_125
ER  - 
%0 Journal Article
%A Xueyuan Wan
%T Positivity of Schur forms for strongly decomposably positive vector bundles
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.125/
%R 10.1017/fms.2023.125
%G en
%F 10_1017_fms_2023_125
Xueyuan Wan. Positivity of Schur forms for strongly decomposably positive vector bundles. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.125

Cité par Sources :