Cogroupoid structures on the circle and the Hodge degeneration
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We exhibit the Hodge degeneration from nonabelian Hodge theory as a $2$-fold delooping of the filtered loop space $E_2$-groupoid in formal moduli problems. This is an iterated groupoid object which in degree $1$ recovers the filtered circle $S^1_{fil}$ of [MRT22]. This exploits a hitherto unstudied additional piece of structure on the topological circle, that of an $E_2$-cogroupoid object in the $\infty $-category of spaces. We relate this cogroupoid structure with the more commonly studied ‘pinch map’ on $S^1$, as well as the Todd class of the Lie algebroid $\mathbb {T}_{X}$; this is an invariant of a smooth and proper scheme X that arises, for example, in the Grothendieck-Riemann-Roch theorem. In particular, we relate the existence of nontrivial Todd classes for schemes to the failure of the pinch map to be formal in the sense of rational homotopy theory. Finally, we record some consequences of this bit of structure at the level of Hochschild cohomology.
@article{10_1017_fms_2023_122,
     author = {Tasos Moulinos},
     title = {Cogroupoid structures on the circle and the {Hodge} degeneration},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2023.122},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.122/}
}
TY  - JOUR
AU  - Tasos Moulinos
TI  - Cogroupoid structures on the circle and the Hodge degeneration
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.122/
DO  - 10.1017/fms.2023.122
LA  - en
ID  - 10_1017_fms_2023_122
ER  - 
%0 Journal Article
%A Tasos Moulinos
%T Cogroupoid structures on the circle and the Hodge degeneration
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.122/
%R 10.1017/fms.2023.122
%G en
%F 10_1017_fms_2023_122
Tasos Moulinos. Cogroupoid structures on the circle and the Hodge degeneration. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.122

Cité par Sources :