Modularity of trianguline Galois representations
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

We use the theory of trianguline $(\varphi ,\Gamma )$-modules over pseudorigid spaces to prove a modularity lifting theorem for certain Galois representations which are trianguline at p, including those with characteristic p coefficients. The use of pseudorigid spaces lets us construct integral models of the trianguline varieties of [BHS17], [Che13] after bounding the slope, and we carry out a Taylor–Wiles patching argument for families of overconvergent modular forms. This permits us to construct a patched quaternionic eigenvariety and deduce our modularity results.
@article{10_1017_fms_2023_116,
     author = {Rebecca Bellovin},
     title = {Modularity of trianguline {Galois} representations},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2023.116},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.116/}
}
TY  - JOUR
AU  - Rebecca Bellovin
TI  - Modularity of trianguline Galois representations
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.116/
DO  - 10.1017/fms.2023.116
LA  - en
ID  - 10_1017_fms_2023_116
ER  - 
%0 Journal Article
%A Rebecca Bellovin
%T Modularity of trianguline Galois representations
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.116/
%R 10.1017/fms.2023.116
%G en
%F 10_1017_fms_2023_116
Rebecca Bellovin. Modularity of trianguline Galois representations. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.116

Cité par Sources :