Modularity of trianguline Galois representations
Forum of Mathematics, Sigma, Tome 12 (2024)
Voir la notice de l'article provenant de la source Cambridge University Press
We use the theory of trianguline $(\varphi ,\Gamma )$-modules over pseudorigid spaces to prove a modularity lifting theorem for certain Galois representations which are trianguline at p, including those with characteristic p coefficients. The use of pseudorigid spaces lets us construct integral models of the trianguline varieties of [BHS17], [Che13] after bounding the slope, and we carry out a Taylor–Wiles patching argument for families of overconvergent modular forms. This permits us to construct a patched quaternionic eigenvariety and deduce our modularity results.
@article{10_1017_fms_2023_116,
author = {Rebecca Bellovin},
title = {Modularity of trianguline {Galois} representations},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {12},
year = {2024},
doi = {10.1017/fms.2023.116},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.116/}
}
Rebecca Bellovin. Modularity of trianguline Galois representations. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.116
Cité par Sources :