Counting geodesics of given commutator length
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\Sigma $ be a closed hyperbolic surface. We study, for fixed g, the asymptotics of the number of those periodic geodesics in $\Sigma $ having at most length L and which can be written as the product of g commutators. The basic idea is to reduce these results to being able to count critical realizations of trivalent graphs in $\Sigma $. In the appendix, we use the same strategy to give a proof of Huber’s geometric prime number theorem.
@article{10_1017_fms_2023_114,
     author = {Viveka Erlandsson and Juan Souto},
     title = {Counting geodesics of given commutator length},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.114},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.114/}
}
TY  - JOUR
AU  - Viveka Erlandsson
AU  - Juan Souto
TI  - Counting geodesics of given commutator length
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.114/
DO  - 10.1017/fms.2023.114
LA  - en
ID  - 10_1017_fms_2023_114
ER  - 
%0 Journal Article
%A Viveka Erlandsson
%A Juan Souto
%T Counting geodesics of given commutator length
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.114/
%R 10.1017/fms.2023.114
%G en
%F 10_1017_fms_2023_114
Viveka Erlandsson; Juan Souto. Counting geodesics of given commutator length. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.114

Cité par Sources :