Lower Bounds for the Canonical Height of a Unicritical Polynomial and Capacity
Forum of Mathematics, Sigma, Tome 12 (2024)

Voir la notice de l'article provenant de la source Cambridge University Press

In a recent breakthrough, Dimitrov [Dim] solved the Schinzel–Zassenhaus conjecture. We follow his approach and adapt it to certain dynamical systems arising from polynomials of the form $T^p+c$, where p is a prime number and where the orbit of $0$ is finite. For example, if $p=2$ and $0$ is periodic under $T^2+c$ with $c\in \mathbb {R}$, we prove a lower bound for the local canonical height of a wandering algebraic integer that is inversely proportional to the field degree. From this, we are able to deduce a lower bound for the canonical height of a wandering point that decays like the inverse square of the field degree. For these f, our method has application to the irreducibility of polynomials. Indeed, say y is preperiodic under f but not periodic. Then any iteration of f minus y is irreducible in $\mathbb {Q}(y)[T]$.
@article{10_1017_fms_2023_112,
     author = {P. Habegger and H. Schmidt},
     title = {Lower {Bounds} for the {Canonical} {Height} of a {Unicritical} {Polynomial} and {Capacity}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {12},
     year = {2024},
     doi = {10.1017/fms.2023.112},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.112/}
}
TY  - JOUR
AU  - P. Habegger
AU  - H. Schmidt
TI  - Lower Bounds for the Canonical Height of a Unicritical Polynomial and Capacity
JO  - Forum of Mathematics, Sigma
PY  - 2024
VL  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.112/
DO  - 10.1017/fms.2023.112
LA  - en
ID  - 10_1017_fms_2023_112
ER  - 
%0 Journal Article
%A P. Habegger
%A H. Schmidt
%T Lower Bounds for the Canonical Height of a Unicritical Polynomial and Capacity
%J Forum of Mathematics, Sigma
%D 2024
%V 12
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.112/
%R 10.1017/fms.2023.112
%G en
%F 10_1017_fms_2023_112
P. Habegger; H. Schmidt. Lower Bounds for the Canonical Height of a Unicritical Polynomial and Capacity. Forum of Mathematics, Sigma, Tome 12 (2024). doi: 10.1017/fms.2023.112

Cité par Sources :