The Spectral Gap and Low-Energy Spectrum in Mean-Field Quantum Spin Systems
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

A semiclassical analysis based on spin-coherent states is used to establish a classification and novel simple formulae for the spectral gap of mean-field spin Hamiltonians. For gapped systems, we provide a full description of the low-energy spectra based on a second-order approximation to the semiclassical Hamiltonian, hence justifying fluctuation theory at zero temperature for this case. We also point out a shift caused by the spherical geometry in these second-order approximations.
@article{10_1017_fms_2023_111,
     author = {Chokri Manai and Simone Warzel},
     title = {The {Spectral} {Gap} and {Low-Energy} {Spectrum} in {Mean-Field} {Quantum} {Spin} {Systems}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.111},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.111/}
}
TY  - JOUR
AU  - Chokri Manai
AU  - Simone Warzel
TI  - The Spectral Gap and Low-Energy Spectrum in Mean-Field Quantum Spin Systems
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.111/
DO  - 10.1017/fms.2023.111
LA  - en
ID  - 10_1017_fms_2023_111
ER  - 
%0 Journal Article
%A Chokri Manai
%A Simone Warzel
%T The Spectral Gap and Low-Energy Spectrum in Mean-Field Quantum Spin Systems
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.111/
%R 10.1017/fms.2023.111
%G en
%F 10_1017_fms_2023_111
Chokri Manai; Simone Warzel. The Spectral Gap and Low-Energy Spectrum in Mean-Field Quantum Spin Systems. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.111

Cité par Sources :