Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general solutions is unbounded and that the complex limit set of each solution exists and is compact and connected.
@article{10_1017_fms_2023_11,
     author = {Viktoria Heu and Nalini Joshi and Milena Radnovi\'c},
     title = {Global {Asymptotics} of the {Sixth} {Painlev\'e} {Equation} in {Okamoto{\textquoteright}s} {Space}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.11/}
}
TY  - JOUR
AU  - Viktoria Heu
AU  - Nalini Joshi
AU  - Milena Radnović
TI  - Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.11/
DO  - 10.1017/fms.2023.11
LA  - en
ID  - 10_1017_fms_2023_11
ER  - 
%0 Journal Article
%A Viktoria Heu
%A Nalini Joshi
%A Milena Radnović
%T Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.11/
%R 10.1017/fms.2023.11
%G en
%F 10_1017_fms_2023_11
Viktoria Heu; Nalini Joshi; Milena Radnović. Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.11

Cité par Sources :