Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We study dynamics of solutions in the initial value space of the sixth Painlevé equation as the independent variable approaches zero. Our main results describe the repeller set, show that the number of poles and zeroes of general solutions is unbounded and that the complex limit set of each solution exists and is compact and connected.
            
            
            
          
        
      @article{10_1017_fms_2023_11,
     author = {Viktoria Heu and Nalini Joshi and Milena Radnovi\'c},
     title = {Global {Asymptotics} of the {Sixth} {Painlev\'e} {Equation} in {Okamoto{\textquoteright}s} {Space}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.11/}
}
                      
                      
                    TY - JOUR AU - Viktoria Heu AU - Nalini Joshi AU - Milena Radnović TI - Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.11/ DO - 10.1017/fms.2023.11 LA - en ID - 10_1017_fms_2023_11 ER -
%0 Journal Article %A Viktoria Heu %A Nalini Joshi %A Milena Radnović %T Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.11/ %R 10.1017/fms.2023.11 %G en %F 10_1017_fms_2023_11
Viktoria Heu; Nalini Joshi; Milena Radnović. Global Asymptotics of the Sixth Painlevé Equation in Okamoto’s Space. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.11
Cité par Sources :
