Lim Ulrich sequences and Boij-Söderberg cones
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.
@article{10_1017_fms_2023_108,
     author = {Srikanth B. Iyengar and Linquan Ma and Mark E. Walker},
     title = {Lim {Ulrich} sequences and {Boij-S\"oderberg} cones},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.108/}
}
TY  - JOUR
AU  - Srikanth B. Iyengar
AU  - Linquan Ma
AU  - Mark E. Walker
TI  - Lim Ulrich sequences and Boij-Söderberg cones
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.108/
DO  - 10.1017/fms.2023.108
LA  - en
ID  - 10_1017_fms_2023_108
ER  - 
%0 Journal Article
%A Srikanth B. Iyengar
%A Linquan Ma
%A Mark E. Walker
%T Lim Ulrich sequences and Boij-Söderberg cones
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.108/
%R 10.1017/fms.2023.108
%G en
%F 10_1017_fms_2023_108
Srikanth B. Iyengar; Linquan Ma; Mark E. Walker. Lim Ulrich sequences and Boij-Söderberg cones. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.108

Cité par Sources :