Lim Ulrich sequences and Boij-Söderberg cones
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded modules over such rings.
            
            
            
          
        
      @article{10_1017_fms_2023_108,
     author = {Srikanth B. Iyengar and Linquan Ma and Mark E. Walker},
     title = {Lim {Ulrich} sequences and {Boij-S\"oderberg} cones},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.108},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.108/}
}
                      
                      
                    TY - JOUR AU - Srikanth B. Iyengar AU - Linquan Ma AU - Mark E. Walker TI - Lim Ulrich sequences and Boij-Söderberg cones JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.108/ DO - 10.1017/fms.2023.108 LA - en ID - 10_1017_fms_2023_108 ER -
Srikanth B. Iyengar; Linquan Ma; Mark E. Walker. Lim Ulrich sequences and Boij-Söderberg cones. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.108
Cité par Sources :
