Two-variable fibrations, factorisation systems and $\infty $-categories of spans
Forum of Mathematics, Sigma, Tome 11 (2023)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove a universal property for $\infty $-categories of spans in the generality of Barwick’s adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop, we give a quick proof of Barwick’s unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an $(\infty ,2)$-category (building on work of Abellán García and Stern), formally identify the unstraightenings of the identity functor on the $\infty $-category of $\infty $-categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).
@article{10_1017_fms_2023_107,
author = {Rune Haugseng and Fabian Hebestreit and Sil Linskens and Joost Nuiten},
title = {Two-variable fibrations, factorisation systems and $\infty $-categories of spans},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {11},
year = {2023},
doi = {10.1017/fms.2023.107},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.107/}
}
TY - JOUR AU - Rune Haugseng AU - Fabian Hebestreit AU - Sil Linskens AU - Joost Nuiten TI - Two-variable fibrations, factorisation systems and $\infty $-categories of spans JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.107/ DO - 10.1017/fms.2023.107 LA - en ID - 10_1017_fms_2023_107 ER -
%0 Journal Article %A Rune Haugseng %A Fabian Hebestreit %A Sil Linskens %A Joost Nuiten %T Two-variable fibrations, factorisation systems and $\infty $-categories of spans %J Forum of Mathematics, Sigma %D 2023 %V 11 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.107/ %R 10.1017/fms.2023.107 %G en %F 10_1017_fms_2023_107
Rune Haugseng; Fabian Hebestreit; Sil Linskens; Joost Nuiten. Two-variable fibrations, factorisation systems and $\infty $-categories of spans. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.107
Cité par Sources :