Two-variable fibrations, factorisation systems and $\infty $-categories of spans
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a universal property for $\infty $-categories of spans in the generality of Barwick’s adequate triples, explicitly describe the cocartesian fibration corresponding to the span functor, and show that the latter restricts to a self-equivalence on the class of orthogonal adequate triples, which we introduce for this purpose. As applications of the machinery we develop, we give a quick proof of Barwick’s unfurling theorem, show that an orthogonal factorisation system arises from a cartesian fibration if and only if it forms an adequate triple (generalising work of Lanari), extend the description of dual (co)cartesian fibrations by Barwick, Glasman and Nardin to two-variable fibrations, explicitly describe parametrised adjoints (extending work of Torii), identify the orthofibration classifying the mapping category functor of an $(\infty ,2)$-category (building on work of Abellán García and Stern), formally identify the unstraightenings of the identity functor on the $\infty $-category of $\infty $-categories with the (op)lax under-categories of a point, and deduce a certain naturality property of the Yoneda embedding (answering a question of Clausen).
@article{10_1017_fms_2023_107,
     author = {Rune Haugseng and Fabian Hebestreit and Sil Linskens and Joost Nuiten},
     title = {Two-variable fibrations, factorisation systems and $\infty $-categories of spans},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.107},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.107/}
}
TY  - JOUR
AU  - Rune Haugseng
AU  - Fabian Hebestreit
AU  - Sil Linskens
AU  - Joost Nuiten
TI  - Two-variable fibrations, factorisation systems and $\infty $-categories of spans
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.107/
DO  - 10.1017/fms.2023.107
LA  - en
ID  - 10_1017_fms_2023_107
ER  - 
%0 Journal Article
%A Rune Haugseng
%A Fabian Hebestreit
%A Sil Linskens
%A Joost Nuiten
%T Two-variable fibrations, factorisation systems and $\infty $-categories of spans
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.107/
%R 10.1017/fms.2023.107
%G en
%F 10_1017_fms_2023_107
Rune Haugseng; Fabian Hebestreit; Sil Linskens; Joost Nuiten. Two-variable fibrations, factorisation systems and $\infty $-categories of spans. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.107

Cité par Sources :