t-Design Curves and Mobile Sampling on the Sphere
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

In analogy to classical spherical t-design points, we introduce the concept of t-design curves on the sphere. This means that the line integral along a t-design curve integrates polynomials of degree t exactly. For low degrees, we construct explicit examples. We also derive lower asymptotic bounds on the lengths of t-design curves. Our main results prove the existence of asymptotically optimal t-design curves in the Euclidean $2$-sphere and the existence of t-design curves in the d-sphere.
@article{10_1017_fms_2023_106,
     author = {Martin Ehler and Karlheinz Gr\"ochenig},
     title = {t-Design {Curves} and {Mobile} {Sampling} on the {Sphere}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.106},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.106/}
}
TY  - JOUR
AU  - Martin Ehler
AU  - Karlheinz Gröchenig
TI  - t-Design Curves and Mobile Sampling on the Sphere
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.106/
DO  - 10.1017/fms.2023.106
LA  - en
ID  - 10_1017_fms_2023_106
ER  - 
%0 Journal Article
%A Martin Ehler
%A Karlheinz Gröchenig
%T t-Design Curves and Mobile Sampling on the Sphere
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.106/
%R 10.1017/fms.2023.106
%G en
%F 10_1017_fms_2023_106
Martin Ehler; Karlheinz Gröchenig. t-Design Curves and Mobile Sampling on the Sphere. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.106

Cité par Sources :