Double Schubert polynomials do have saturated Newton polytopes
Forum of Mathematics, Sigma, Tome 11 (2023)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that double Schubert polynomials have the saturated Newton polytope property. This settles a conjecture by Monical, Tokcan and Yong. Our ideas are motivated by the theory of multidegrees. We introduce a notion of standardization of ideals that enables us to study nonstandard multigradings. This allows us to show that the support of the multidegree polynomial of each Cohen–Macaulay prime ideal in a nonstandard multigrading, and in particular, that of each Schubert determinantal ideal is a discrete polymatroid.
@article{10_1017_fms_2023_101,
     author = {Federico Castillo and Yairon Cid-Ruiz and Fatemeh Mohammadi and Jonathan Monta\~no},
     title = {Double {Schubert} polynomials do have saturated {Newton} polytopes},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.101},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.101/}
}
TY  - JOUR
AU  - Federico Castillo
AU  - Yairon Cid-Ruiz
AU  - Fatemeh Mohammadi
AU  - Jonathan Montaño
TI  - Double Schubert polynomials do have saturated Newton polytopes
JO  - Forum of Mathematics, Sigma
PY  - 2023
VL  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.101/
DO  - 10.1017/fms.2023.101
LA  - en
ID  - 10_1017_fms_2023_101
ER  - 
%0 Journal Article
%A Federico Castillo
%A Yairon Cid-Ruiz
%A Fatemeh Mohammadi
%A Jonathan Montaño
%T Double Schubert polynomials do have saturated Newton polytopes
%J Forum of Mathematics, Sigma
%D 2023
%V 11
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.101/
%R 10.1017/fms.2023.101
%G en
%F 10_1017_fms_2023_101
Federico Castillo; Yairon Cid-Ruiz; Fatemeh Mohammadi; Jonathan Montaño. Double Schubert polynomials do have saturated Newton polytopes. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.101

Cité par Sources :