Length functions in Teichmüller and anti-de Sitter geometry
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We establish a link between the behavior of length functions on Teichmüller space and the geometry of certain anti-de Sitter $3$-manifolds. As an application, we give new purely anti-de Sitter proofs of results of Teichmüller theory such as (strict) convexity of length functions along shear paths and geometric bounds on their second variation along earthquakes. Along the way, we provide shear-bend coordinates for GHMC anti-de Sitter $3$-manifolds.
            
            
            
          
        
      @article{10_1017_fms_2023_100,
     author = {Filippo Mazzoli and Gabriele Viaggi},
     title = {Length functions in {Teichm\"uller} and anti-de {Sitter} geometry},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.100/}
}
                      
                      
                    TY - JOUR AU - Filippo Mazzoli AU - Gabriele Viaggi TI - Length functions in Teichmüller and anti-de Sitter geometry JO - Forum of Mathematics, Sigma PY - 2023 VL - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.100/ DO - 10.1017/fms.2023.100 LA - en ID - 10_1017_fms_2023_100 ER -
Filippo Mazzoli; Gabriele Viaggi. Length functions in Teichmüller and anti-de Sitter geometry. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.100
Cité par Sources :
