On the derived Lusztig correspondence
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 11 (2023)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let G be a connected reductive group, T a maximal torus of G, N the normalizer of T and $W=N/T$ the Weyl group of G. Let ${\mathfrak {g}}$ and ${\mathfrak {t}}$ be the Lie algebras of G and T. The affine variety $\mathfrak {car}={\mathfrak {t}}/\!/W$ of semisimple G-orbits of ${\mathfrak {g}}$ has a natural stratification 
indexed by the set of G-conjugacy classes of Levi subgroups: the open stratum is the set of regular semisimple orbits and the closed stratum is the set of central orbits.In [17], Rider considered the triangulated subcategory $D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {g}}_{\mathrm {nil}}/G])^{\mathrm {Spr}}$ of $D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {g}}_{\mathrm {nil}}/G])$ generated by the direct summand of the Springer sheaf. She proved that it is equivalent to the derived category of finitely generated dg modules over the smash product algebra ${\overline {\mathbb {Q}}_{\ell }}[W]\# H^{\bullet }_G(G/B)$ where $H^{\bullet }_G(G/B)$ is the G-equivariant cohomology of the flag variety. Notice that the later derived category is $D_{\mathrm {c}}^{\mathrm {b}}(\mathrm {B}(N))$ where $\mathrm {B}(N)=[\mathrm {Spec}(k)/N]$ is the classifying stack of N-torsors.The aim of this paper is to understand geometrically and generalise Rider’s equivalence of categories: For each $\lambda $ we construct a cohomological correspondence inducing an equivalence of categories between $D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {t}}_{\lambda }/N])$ and $D_{\mathrm {c}}^{\mathrm {b}}([{\mathfrak {g}}_{\lambda }/G])^{\mathrm {Spr}}$.
            
            
            
          
        
      | $ \begin{align*} \mathfrak{car}=\coprod_{\lambda}\mathfrak{car}_{\lambda} \end{align*} $ | 
@article{10_1017_fms_2023_10,
     author = {G\'erard Laumon and Emmanuel Letellier},
     title = {On the derived {Lusztig} correspondence},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {11},
     year = {2023},
     doi = {10.1017/fms.2023.10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2023.10/}
}
                      
                      
                    Gérard Laumon; Emmanuel Letellier. On the derived Lusztig correspondence. Forum of Mathematics, Sigma, Tome 11 (2023). doi: 10.1017/fms.2023.10
Cité par Sources :
