Riemann–Roch for stacky matrix factorizations
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We establish a Hirzebruch–Riemann–Roch-type theorem and a Grothendieck–Riemann–Roch-type theorem for matrix factorizations on quotient Deligne–Mumford stacks. For this, we first construct a Hochschild–Kostant–Rosenberg-type isomorphism explicit enough to yield a categorical Chern character formula. Then, we find an expression of the canonical pairing of Shklyarov under the isomorphism.
@article{10_1017_fms_2022_99,
     author = {Dongwook Choa and Bumsig Kim and Bhamidi Sreedhar},
     title = {Riemann{\textendash}Roch for stacky matrix factorizations},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.99},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.99/}
}
TY  - JOUR
AU  - Dongwook Choa
AU  - Bumsig Kim
AU  - Bhamidi Sreedhar
TI  - Riemann–Roch for stacky matrix factorizations
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.99/
DO  - 10.1017/fms.2022.99
LA  - en
ID  - 10_1017_fms_2022_99
ER  - 
%0 Journal Article
%A Dongwook Choa
%A Bumsig Kim
%A Bhamidi Sreedhar
%T Riemann–Roch for stacky matrix factorizations
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.99/
%R 10.1017/fms.2022.99
%G en
%F 10_1017_fms_2022_99
Dongwook Choa; Bumsig Kim; Bhamidi Sreedhar. Riemann–Roch for stacky matrix factorizations. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.99

Cité par Sources :