Riemann–Roch for stacky matrix factorizations
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 10 (2022)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              We establish a Hirzebruch–Riemann–Roch-type theorem and a Grothendieck–Riemann–Roch-type theorem for matrix factorizations on quotient Deligne–Mumford stacks. For this, we first construct a Hochschild–Kostant–Rosenberg-type isomorphism explicit enough to yield a categorical Chern character formula. Then, we find an expression of the canonical pairing of Shklyarov under the isomorphism.
            
            
            
          
        
      @article{10_1017_fms_2022_99,
     author = {Dongwook Choa and Bumsig Kim and Bhamidi Sreedhar},
     title = {Riemann{\textendash}Roch for stacky matrix factorizations},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.99},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.99/}
}
                      
                      
                    TY - JOUR AU - Dongwook Choa AU - Bumsig Kim AU - Bhamidi Sreedhar TI - Riemann–Roch for stacky matrix factorizations JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.99/ DO - 10.1017/fms.2022.99 LA - en ID - 10_1017_fms_2022_99 ER -
Dongwook Choa; Bumsig Kim; Bhamidi Sreedhar. Riemann–Roch for stacky matrix factorizations. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.99
Cité par Sources :