Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 10 (2022)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              The most fundamental example of mirror symmetry compares the Fermat hypersurfaces in $\mathbb {P}^n$ and $\mathbb {P}^n/G$, where G is a finite group that acts on $\mathbb {P}^n$ and preserves the Fermat hypersurface. We generalize this to hypersurfaces in Grassmannians, where the picture is richer and more complex. There is a finite group G that acts on the Grassmannian $\operatorname {{\mathrm {Gr}}}(n,r)$ and preserves an appropriate Calabi–Yau hypersurface. We establish how mirror symmetry, toric degenerations, blow-ups and variation of GIT relate the Calabi–Yau hypersurfaces inside $\operatorname {{\mathrm {Gr}}}(n,r)$ and $\operatorname {{\mathrm {Gr}}}(n,r)/G$. This allows us to describe a compactification of the Eguchi–Hori–Xiong mirror to the Grassmannian, inside a blow-up of the quotient of the Grassmannian by G.
            
            
            
          
        
      @article{10_1017_fms_2022_98,
     author = {Tom Coates and Charles Doran and Elana Kalashnikov},
     title = {Unwinding {Toric} {Degenerations} and {Mirror} {Symmetry} for {Grassmannians}},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.98/}
}
                      
                      
                    TY - JOUR AU - Tom Coates AU - Charles Doran AU - Elana Kalashnikov TI - Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.98/ DO - 10.1017/fms.2022.98 LA - en ID - 10_1017_fms_2022_98 ER -
%0 Journal Article %A Tom Coates %A Charles Doran %A Elana Kalashnikov %T Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.98/ %R 10.1017/fms.2022.98 %G en %F 10_1017_fms_2022_98
Tom Coates; Charles Doran; Elana Kalashnikov. Unwinding Toric Degenerations and Mirror Symmetry for Grassmannians. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.98
Cité par Sources :