Stability condition on Calabi–Yau threefold of complete intersection of quadratic and quartic hypersurfaces
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we prove a Clifford type inequality for the curve $X_{2,2,2,4}$, which is the intersection of a quartic and three general quadratics in $\mathbb {P}^5$. We thus prove a stronger Bogomolov–Gieseker inequality for characters of stable vector bundles and stable objects on Calabi–Yau complete intersection $X_{2,4}$. Applying the scheme proposed by Bayer, Bertram, Macrì, Stellari and Toda, we can construct an open subset of Bridgeland stability conditions on $X_{2,4}$.
@article{10_1017_fms_2022_96,
     author = {Shengxuan Liu},
     title = {Stability condition on {Calabi{\textendash}Yau} threefold of complete intersection of quadratic and quartic hypersurfaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.96},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.96/}
}
TY  - JOUR
AU  - Shengxuan Liu
TI  - Stability condition on Calabi–Yau threefold of complete intersection of quadratic and quartic hypersurfaces
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.96/
DO  - 10.1017/fms.2022.96
LA  - en
ID  - 10_1017_fms_2022_96
ER  - 
%0 Journal Article
%A Shengxuan Liu
%T Stability condition on Calabi–Yau threefold of complete intersection of quadratic and quartic hypersurfaces
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.96/
%R 10.1017/fms.2022.96
%G en
%F 10_1017_fms_2022_96
Shengxuan Liu. Stability condition on Calabi–Yau threefold of complete intersection of quadratic and quartic hypersurfaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.96

Cité par Sources :