Non-abelian Mellin transformations and applications
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser’s Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.
@article{10_1017_fms_2022_91,
author = {Yongqiang Liu and Lauren\c{t}iu Maxim and Botong Wang},
title = {Non-abelian {Mellin} transformations and applications},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.91},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.91/}
}
TY - JOUR AU - Yongqiang Liu AU - Laurenţiu Maxim AU - Botong Wang TI - Non-abelian Mellin transformations and applications JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.91/ DO - 10.1017/fms.2022.91 LA - en ID - 10_1017_fms_2022_91 ER -
Yongqiang Liu; Laurenţiu Maxim; Botong Wang. Non-abelian Mellin transformations and applications. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.91
Cité par Sources :