Non-abelian Mellin transformations and applications
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study non-abelian versions of the Mellin transformations, originally introduced by Gabber-Loeser on complex affine tori. Our main result is a generalisation to the non-abelian context and with arbitrary coefficients of the t-exactness of Gabber-Loeser’s Mellin transformation. As an intermediate step, we obtain vanishing results for the Sabbah specialisation functors. Our main application is to construct new examples of duality spaces in the sense of Bieri-Eckmann, generalising results of Denham-Suciu.
@article{10_1017_fms_2022_91,
     author = {Yongqiang Liu and Lauren\c{t}iu Maxim and Botong Wang},
     title = {Non-abelian {Mellin} transformations and applications},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.91},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.91/}
}
TY  - JOUR
AU  - Yongqiang Liu
AU  - Laurenţiu Maxim
AU  - Botong Wang
TI  - Non-abelian Mellin transformations and applications
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.91/
DO  - 10.1017/fms.2022.91
LA  - en
ID  - 10_1017_fms_2022_91
ER  - 
%0 Journal Article
%A Yongqiang Liu
%A Laurenţiu Maxim
%A Botong Wang
%T Non-abelian Mellin transformations and applications
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.91/
%R 10.1017/fms.2022.91
%G en
%F 10_1017_fms_2022_91
Yongqiang Liu; Laurenţiu Maxim; Botong Wang. Non-abelian Mellin transformations and applications. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.91

Cité par Sources :