Set superpartitions and superspace duality modules
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
The superspace ring $\Omega _n$ is a rank n polynomial ring tensored with a rank n exterior algebra. Using an extension of the Vandermonde determinant to $\Omega _n$, the authors previously defined a family of doubly graded quotients ${\mathbb {W}}_{n,k}$ of $\Omega _n$, which carry an action of the symmetric group ${\mathfrak {S}}_n$ and satisfy a bigraded version of Poincaré Duality. In this paper, we examine the duality modules ${\mathbb {W}}_{n,k}$ in greater detail. We describe a monomial basis of ${\mathbb {W}}_{n,k}$ and give combinatorial formulas for its bigraded Hilbert and Frobenius series. These formulas involve new combinatorial objects called ordered set superpartitions. These are ordered set partitions $(B_1 \mid \cdots \mid B_k)$ of $\{1,\dots ,n\}$ in which the nonminimal elements of any block $B_i$ may be barred or unbarred.
@article{10_1017_fms_2022_90,
author = {Brendon Rhoades and Andrew Timothy Wilson},
title = {Set superpartitions and superspace duality modules},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.90},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.90/}
}
TY - JOUR AU - Brendon Rhoades AU - Andrew Timothy Wilson TI - Set superpartitions and superspace duality modules JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.90/ DO - 10.1017/fms.2022.90 LA - en ID - 10_1017_fms_2022_90 ER -
Brendon Rhoades; Andrew Timothy Wilson. Set superpartitions and superspace duality modules. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.90
Cité par Sources :