Functional norms, condition numbers and numerical algorithms in algebraic geometry
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In numerical linear algebra, a well-established practice is to choose a norm that exploits the structure of the problem at hand to optimise accuracy or computational complexity. In numerical polynomial algebra, a single norm (attributed to Weyl) dominates the literature. This article initiates the use of $L_p$ norms for numerical algebraic geometry, with an emphasis on $L_{\infty }$. This classical idea yields strong improvements in the analysis of the number of steps performed by numerous iterative algorithms. In particular, we exhibit three algorithms where, despite the complexity of computing $L_{\infty }$-norm, the use of $L_p$-norms substantially reduces computational complexity: a subdivision-based algorithm in real algebraic geometry for computing the homology of semialgebraic sets, a well-known meshing algorithm in computational geometry and the computation of zeros of systems of complex quadratic polynomials (a particular case of Smale’s 17th problem).
@article{10_1017_fms_2022_89,
     author = {Felipe Cucker and Alperen A. Erg\"ur and Josu\'e Tonelli-Cueto},
     title = {Functional norms, condition numbers and numerical algorithms in algebraic geometry},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.89},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.89/}
}
TY  - JOUR
AU  - Felipe Cucker
AU  - Alperen A. Ergür
AU  - Josué Tonelli-Cueto
TI  - Functional norms, condition numbers and numerical algorithms in algebraic geometry
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.89/
DO  - 10.1017/fms.2022.89
LA  - en
ID  - 10_1017_fms_2022_89
ER  - 
%0 Journal Article
%A Felipe Cucker
%A Alperen A. Ergür
%A Josué Tonelli-Cueto
%T Functional norms, condition numbers and numerical algorithms in algebraic geometry
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.89/
%R 10.1017/fms.2022.89
%G en
%F 10_1017_fms_2022_89
Felipe Cucker; Alperen A. Ergür; Josué Tonelli-Cueto. Functional norms, condition numbers and numerical algorithms in algebraic geometry. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.89

Cité par Sources :