Families of similar simplices inscribed in most smoothly embedded spheres
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Let $\Delta $ denote a nondegenerate k-simplex in $\mathbb {R}^k$. The set $\operatorname {\mathrm {Sim}}(\Delta )$ of simplices in $\mathbb {R}^k$ similar to $\Delta $ is diffeomorphic to $\operatorname {O}(k)\times [0,\infty )\times \mathbb {R}^k$, where the factor in $\operatorname {O}(k)$ is a matrix called the pose. Among $(k-1)$-spheres smoothly embedded in $\mathbb {R}^k$ and isotopic to the identity, there is a dense family of spheres, for which the subset of $\operatorname {\mathrm {Sim}}(\Delta )$ of simplices inscribed in each embedded sphere contains a similar simplex of every pose $U\in \operatorname {O}(k)$. Further, the intersection of $\operatorname {\mathrm {Sim}}(\Delta )$ with the configuration space of $k+1$ distinct points on an embedded sphere is a manifold whose top homology class maps to the top class in $\operatorname {O}(k)$ via the pose map. This gives a high-dimensional generalisation of classical results on inscribing families of triangles in plane curves. We use techniques established in our previous paper on the square-peg problem where we viewed inscribed simplices in spheres as transverse intersections of submanifolds of compactified configuration spaces.
@article{10_1017_fms_2022_88,
     author = {Jason Cantarella and Elizabeth Denne and John McCleary},
     title = {Families of similar simplices inscribed in most smoothly embedded spheres},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.88},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.88/}
}
TY  - JOUR
AU  - Jason Cantarella
AU  - Elizabeth Denne
AU  - John McCleary
TI  - Families of similar simplices inscribed in most smoothly embedded spheres
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.88/
DO  - 10.1017/fms.2022.88
LA  - en
ID  - 10_1017_fms_2022_88
ER  - 
%0 Journal Article
%A Jason Cantarella
%A Elizabeth Denne
%A John McCleary
%T Families of similar simplices inscribed in most smoothly embedded spheres
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.88/
%R 10.1017/fms.2022.88
%G en
%F 10_1017_fms_2022_88
Jason Cantarella; Elizabeth Denne; John McCleary. Families of similar simplices inscribed in most smoothly embedded spheres. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.88

Cité par Sources :