Families of similar simplices inscribed in most smoothly embedded spheres
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 10 (2022)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              Let $\Delta $ denote a nondegenerate k-simplex in $\mathbb {R}^k$. The set $\operatorname {\mathrm {Sim}}(\Delta )$ of simplices in $\mathbb {R}^k$ similar to $\Delta $ is diffeomorphic to $\operatorname {O}(k)\times [0,\infty )\times \mathbb {R}^k$, where the factor in $\operatorname {O}(k)$ is a matrix called the pose. Among $(k-1)$-spheres smoothly embedded in $\mathbb {R}^k$ and isotopic to the identity, there is a dense family of spheres, for which the subset of $\operatorname {\mathrm {Sim}}(\Delta )$ of simplices inscribed in each embedded sphere contains a similar simplex of every pose $U\in \operatorname {O}(k)$. Further, the intersection of $\operatorname {\mathrm {Sim}}(\Delta )$ with the configuration space of $k+1$ distinct points on an embedded sphere is a manifold whose top homology class maps to the top class in $\operatorname {O}(k)$ via the pose map. This gives a high-dimensional generalisation of classical results on inscribing families of triangles in plane curves. We use techniques established in our previous paper on the square-peg problem where we viewed inscribed simplices in spheres as transverse intersections of submanifolds of compactified configuration spaces.
            
            
            
          
        
      @article{10_1017_fms_2022_88,
     author = {Jason Cantarella and Elizabeth Denne and John McCleary},
     title = {Families of similar simplices inscribed in most smoothly embedded spheres},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.88},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.88/}
}
                      
                      
                    TY - JOUR AU - Jason Cantarella AU - Elizabeth Denne AU - John McCleary TI - Families of similar simplices inscribed in most smoothly embedded spheres JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.88/ DO - 10.1017/fms.2022.88 LA - en ID - 10_1017_fms_2022_88 ER -
%0 Journal Article %A Jason Cantarella %A Elizabeth Denne %A John McCleary %T Families of similar simplices inscribed in most smoothly embedded spheres %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.88/ %R 10.1017/fms.2022.88 %G en %F 10_1017_fms_2022_88
Jason Cantarella; Elizabeth Denne; John McCleary. Families of similar simplices inscribed in most smoothly embedded spheres. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.88
Cité par Sources :