Smooth hypersurfaces in abelian varieties over arithmetic rings
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Let A be an abelian scheme of dimension at least four over a $\mathbb {Z}$-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.
@article{10_1017_fms_2022_87,
     author = {Ariyan Javanpeykar and Siddharth Mathur},
     title = {Smooth hypersurfaces in abelian varieties over arithmetic rings},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.87},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.87/}
}
TY  - JOUR
AU  - Ariyan Javanpeykar
AU  - Siddharth Mathur
TI  - Smooth hypersurfaces in abelian varieties over arithmetic rings
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.87/
DO  - 10.1017/fms.2022.87
LA  - en
ID  - 10_1017_fms_2022_87
ER  - 
%0 Journal Article
%A Ariyan Javanpeykar
%A Siddharth Mathur
%T Smooth hypersurfaces in abelian varieties over arithmetic rings
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.87/
%R 10.1017/fms.2022.87
%G en
%F 10_1017_fms_2022_87
Ariyan Javanpeykar; Siddharth Mathur. Smooth hypersurfaces in abelian varieties over arithmetic rings. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.87

Cité par Sources :