Smooth hypersurfaces in abelian varieties over arithmetic rings
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
Let A be an abelian scheme of dimension at least four over a $\mathbb {Z}$-finitely generated integral domain R of characteristic zero, and let L be an ample line bundle on A. We prove that the set of smooth hypersurfaces D in A representing L is finite by showing that the moduli stack of such hypersurfaces has only finitely many R-points. We accomplish this by using level structures to interpolate finiteness results between this moduli stack and the stack of canonically polarized varieties.
@article{10_1017_fms_2022_87,
author = {Ariyan Javanpeykar and Siddharth Mathur},
title = {Smooth hypersurfaces in abelian varieties over arithmetic rings},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.87},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.87/}
}
TY - JOUR AU - Ariyan Javanpeykar AU - Siddharth Mathur TI - Smooth hypersurfaces in abelian varieties over arithmetic rings JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.87/ DO - 10.1017/fms.2022.87 LA - en ID - 10_1017_fms_2022_87 ER -
Ariyan Javanpeykar; Siddharth Mathur. Smooth hypersurfaces in abelian varieties over arithmetic rings. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.87
Cité par Sources :