Rank-uniform local law for Wigner matrices
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and Lopatto [7] as valid for specific small-rank observables.
@article{10_1017_fms_2022_86,
     author = {Giorgio Cipolloni and L\'aszl\'o Erd\H{o}s and Dominik Schr\"oder},
     title = {Rank-uniform local law for {Wigner} matrices},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.86},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.86/}
}
TY  - JOUR
AU  - Giorgio Cipolloni
AU  - László Erdős
AU  - Dominik Schröder
TI  - Rank-uniform local law for Wigner matrices
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.86/
DO  - 10.1017/fms.2022.86
LA  - en
ID  - 10_1017_fms_2022_86
ER  - 
%0 Journal Article
%A Giorgio Cipolloni
%A László Erdős
%A Dominik Schröder
%T Rank-uniform local law for Wigner matrices
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.86/
%R 10.1017/fms.2022.86
%G en
%F 10_1017_fms_2022_86
Giorgio Cipolloni; László Erdős; Dominik Schröder. Rank-uniform local law for Wigner matrices. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.86

Cité par Sources :