Rank-uniform local law for Wigner matrices
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove a general local law for Wigner matrices that optimally handles observables of arbitrary rank and thus unifies the well-known averaged and isotropic local laws. As an application, we prove a central limit theorem in quantum unique ergodicity (QUE): that is, we show that the quadratic forms of a general deterministic matrix A on the bulk eigenvectors of a Wigner matrix have approximately Gaussian fluctuation. For the bulk spectrum, we thus generalise our previous result [17] as valid for test matrices A of large rank as well as the result of Benigni and Lopatto [7] as valid for specific small-rank observables.
@article{10_1017_fms_2022_86,
author = {Giorgio Cipolloni and L\'aszl\'o Erd\H{o}s and Dominik Schr\"oder},
title = {Rank-uniform local law for {Wigner} matrices},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.86},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.86/}
}
TY - JOUR AU - Giorgio Cipolloni AU - László Erdős AU - Dominik Schröder TI - Rank-uniform local law for Wigner matrices JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.86/ DO - 10.1017/fms.2022.86 LA - en ID - 10_1017_fms_2022_86 ER -
Giorgio Cipolloni; László Erdős; Dominik Schröder. Rank-uniform local law for Wigner matrices. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.86
Cité par Sources :