The topological complexity of pure graph braid groups is stably maximal
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove Farber’s conjecture on the stable topological complexity of configuration spaces of graphs. The conjecture follows from a general lower bound derived from recent insights into the topological complexity of aspherical spaces. Our arguments apply equally to higher topological complexity.
@article{10_1017_fms_2022_83,
     author = {Ben Knudsen},
     title = {The topological complexity of pure graph braid groups is stably maximal},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.83/}
}
TY  - JOUR
AU  - Ben Knudsen
TI  - The topological complexity of pure graph braid groups is stably maximal
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.83/
DO  - 10.1017/fms.2022.83
LA  - en
ID  - 10_1017_fms_2022_83
ER  - 
%0 Journal Article
%A Ben Knudsen
%T The topological complexity of pure graph braid groups is stably maximal
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.83/
%R 10.1017/fms.2022.83
%G en
%F 10_1017_fms_2022_83
Ben Knudsen. The topological complexity of pure graph braid groups is stably maximal. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.83

Cité par Sources :