Uniqueness of enhancements for derived and geometric categories
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that the derived categories of abelian categories have unique enhancements—all of them, the unbounded, bounded, bounded above and bounded below derived categories. The unseparated and left completed derived categories of a Grothendieck abelian category are also shown to have unique enhancements. Finally, we show that the derived category of complexes with quasi-coherent cohomology and the category of perfect complexes have unique enhancements for quasi-compact and quasi-separated schemes.
@article{10_1017_fms_2022_82,
author = {Alberto Canonaco and Amnon Neeman and Paolo Stellari},
title = {Uniqueness of enhancements for derived and geometric categories},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.82},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.82/}
}
TY - JOUR AU - Alberto Canonaco AU - Amnon Neeman AU - Paolo Stellari TI - Uniqueness of enhancements for derived and geometric categories JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.82/ DO - 10.1017/fms.2022.82 LA - en ID - 10_1017_fms_2022_82 ER -
%0 Journal Article %A Alberto Canonaco %A Amnon Neeman %A Paolo Stellari %T Uniqueness of enhancements for derived and geometric categories %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.82/ %R 10.1017/fms.2022.82 %G en %F 10_1017_fms_2022_82
Alberto Canonaco; Amnon Neeman; Paolo Stellari. Uniqueness of enhancements for derived and geometric categories. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.82
Cité par Sources :