Uniqueness of enhancements for derived and geometric categories
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that the derived categories of abelian categories have unique enhancements—all of them, the unbounded, bounded, bounded above and bounded below derived categories. The unseparated and left completed derived categories of a Grothendieck abelian category are also shown to have unique enhancements. Finally, we show that the derived category of complexes with quasi-coherent cohomology and the category of perfect complexes have unique enhancements for quasi-compact and quasi-separated schemes.
@article{10_1017_fms_2022_82,
     author = {Alberto Canonaco and Amnon Neeman and Paolo Stellari},
     title = {Uniqueness of enhancements for derived and geometric categories},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.82},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.82/}
}
TY  - JOUR
AU  - Alberto Canonaco
AU  - Amnon Neeman
AU  - Paolo Stellari
TI  - Uniqueness of enhancements for derived and geometric categories
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.82/
DO  - 10.1017/fms.2022.82
LA  - en
ID  - 10_1017_fms_2022_82
ER  - 
%0 Journal Article
%A Alberto Canonaco
%A Amnon Neeman
%A Paolo Stellari
%T Uniqueness of enhancements for derived and geometric categories
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.82/
%R 10.1017/fms.2022.82
%G en
%F 10_1017_fms_2022_82
Alberto Canonaco; Amnon Neeman; Paolo Stellari. Uniqueness of enhancements for derived and geometric categories. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.82

Cité par Sources :