Elements of prime order in Tate–Shafarevich groups of abelian varieties over ${\mathbb Q}$
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
For each prime p, we show that there exist geometrically simple abelian varieties A over ${\mathbb Q}$ with . Specifically, for any prime $N\equiv 1 \ \pmod p$, let $A_f$ be an optimal quotient of $J_0(N)$ with a rational point P of order p, and let $B = A_f/\langle P \rangle $. Then the number of positive integers $d \leq X$ with is $ \gg X/\log X$, where $\widehat B_d$ is the dual of the dth quadratic twist of B. We prove this more generally for abelian varieties of $\operatorname {\mathrm {GL}}_2$-type with a p-isogeny satisfying a mild technical condition. In the special case of elliptic curves, we give stronger results, including many examples where for an explicit positive proportion of integers d.
@article{10_1017_fms_2022_80,
author = {Ari Shnidman and Ariel Weiss},
title = {Elements of prime order in {Tate{\textendash}Shafarevich} groups of abelian varieties over ${\mathbb Q}$},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.80},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.80/}
}
TY - JOUR
AU - Ari Shnidman
AU - Ariel Weiss
TI - Elements of prime order in Tate–Shafarevich groups of abelian varieties over ${\mathbb Q}$
JO - Forum of Mathematics, Sigma
PY - 2022
VL - 10
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.80/
DO - 10.1017/fms.2022.80
LA - en
ID - 10_1017_fms_2022_80
ER -
%0 Journal Article
%A Ari Shnidman
%A Ariel Weiss
%T Elements of prime order in Tate–Shafarevich groups of abelian varieties over ${\mathbb Q}$
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.80/
%R 10.1017/fms.2022.80
%G en
%F 10_1017_fms_2022_80
Ari Shnidman; Ariel Weiss. Elements of prime order in Tate–Shafarevich groups of abelian varieties over ${\mathbb Q}$. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.80
Cité par Sources :