Operator-free sparse domination
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We obtain a sparse domination principle for an arbitrary family of functions $f(x,Q)$, where $x\in {\mathbb R}^{n}$ and Q is a cube in ${\mathbb R}^{n}$. When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse domination principle can be also applied to non-operator objects. In particular, we show applications to generalised Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-valued square functions.
@article{10_1017_fms_2022_8,
author = {Andrei K. Lerner and Emiel Lorist and Sheldy Ombrosi},
title = {Operator-free sparse domination},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.8/}
}
Andrei K. Lerner; Emiel Lorist; Sheldy Ombrosi. Operator-free sparse domination. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.8
Cité par Sources :