Positivity of direct images with a Poincaré type twist
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We consider a holomorphic family $f:\mathscr {X} \to S$ of compact complex manifolds and a line bundle $\mathscr {L}\to \mathscr {X}$. Given that $\mathscr {L}^{-1}$ carries a singular hermitian metric that has Poincaré type singularities along a relative snc divisor $\mathscr {D}$, the direct image $f_*(K_{\mathscr {X}/S}\otimes \mathscr {D} \otimes \mathscr {L})$ carries a smooth hermitian metric. If $\mathscr {L}$ is relatively positive, we give an explicit formula for its curvature. The result applies to families of log-canonically polarized pairs. Moreover, we show that it improves the general positivity result of Berndtsson-Păun in a special situation of a big line bundle.
@article{10_1017_fms_2022_79,
     author = {Philipp Naumann},
     title = {Positivity of direct images with a {Poincar\'e} type twist},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.79},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.79/}
}
TY  - JOUR
AU  - Philipp Naumann
TI  - Positivity of direct images with a Poincaré type twist
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.79/
DO  - 10.1017/fms.2022.79
LA  - en
ID  - 10_1017_fms_2022_79
ER  - 
%0 Journal Article
%A Philipp Naumann
%T Positivity of direct images with a Poincaré type twist
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.79/
%R 10.1017/fms.2022.79
%G en
%F 10_1017_fms_2022_79
Philipp Naumann. Positivity of direct images with a Poincaré type twist. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.79

Cité par Sources :