Betti maps, Pell equations in polynomials and almost-Belyi maps
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We study the Betti map of a particular (but relevant) section of the family of Jacobians of hyperelliptic curves using the polynomial Pell equation $A^2-DB^2=1$, with $A,B,D\in \mathbb {C}[t]$ and certain ramified covers $\mathbb {P}^1\to \mathbb {P}^1$ arising from such equation and having heavy constrains on their ramification. In particular, we obtain a special case of a result of André, Corvaja and Zannier on the submersivity of the Betti map by studying the locus of the polynomials D that fit in a Pell equation inside the space of polynomials of fixed even degree. Moreover, Riemann existence theorem associates to the abovementioned covers certain permutation representations: We are able to characterize the representations corresponding to ‘primitive’ solutions of the Pell equation or to powers of solutions of lower degree and give a combinatorial description of these representations when D has degree 4. In turn, this characterization gives back some precise information about the rational values of the Betti map.
@article{10_1017_fms_2022_77,
     author = {Fabrizio Barroero and Laura Capuano and Umberto Zannier},
     title = {Betti maps, {Pell} equations in polynomials and {almost-Belyi} maps},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.77},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.77/}
}
TY  - JOUR
AU  - Fabrizio Barroero
AU  - Laura Capuano
AU  - Umberto Zannier
TI  - Betti maps, Pell equations in polynomials and almost-Belyi maps
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.77/
DO  - 10.1017/fms.2022.77
LA  - en
ID  - 10_1017_fms_2022_77
ER  - 
%0 Journal Article
%A Fabrizio Barroero
%A Laura Capuano
%A Umberto Zannier
%T Betti maps, Pell equations in polynomials and almost-Belyi maps
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.77/
%R 10.1017/fms.2022.77
%G en
%F 10_1017_fms_2022_77
Fabrizio Barroero; Laura Capuano; Umberto Zannier. Betti maps, Pell equations in polynomials and almost-Belyi maps. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.77

Cité par Sources :