Betti maps, Pell equations in polynomials and almost-Belyi maps
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We study the Betti map of a particular (but relevant) section of the family of Jacobians of hyperelliptic curves using the polynomial Pell equation $A^2-DB^2=1$, with $A,B,D\in \mathbb {C}[t]$ and certain ramified covers $\mathbb {P}^1\to \mathbb {P}^1$ arising from such equation and having heavy constrains on their ramification. In particular, we obtain a special case of a result of André, Corvaja and Zannier on the submersivity of the Betti map by studying the locus of the polynomials D that fit in a Pell equation inside the space of polynomials of fixed even degree. Moreover, Riemann existence theorem associates to the abovementioned covers certain permutation representations: We are able to characterize the representations corresponding to ‘primitive’ solutions of the Pell equation or to powers of solutions of lower degree and give a combinatorial description of these representations when D has degree 4. In turn, this characterization gives back some precise information about the rational values of the Betti map.
@article{10_1017_fms_2022_77,
author = {Fabrizio Barroero and Laura Capuano and Umberto Zannier},
title = {Betti maps, {Pell} equations in polynomials and {almost-Belyi} maps},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.77},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.77/}
}
TY - JOUR AU - Fabrizio Barroero AU - Laura Capuano AU - Umberto Zannier TI - Betti maps, Pell equations in polynomials and almost-Belyi maps JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.77/ DO - 10.1017/fms.2022.77 LA - en ID - 10_1017_fms_2022_77 ER -
%0 Journal Article %A Fabrizio Barroero %A Laura Capuano %A Umberto Zannier %T Betti maps, Pell equations in polynomials and almost-Belyi maps %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.77/ %R 10.1017/fms.2022.77 %G en %F 10_1017_fms_2022_77
Fabrizio Barroero; Laura Capuano; Umberto Zannier. Betti maps, Pell equations in polynomials and almost-Belyi maps. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.77
Cité par Sources :