Computation of lattice isomorphisms and the integral matrix similarity problem
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$-order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two $\Lambda $-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism $X \rightarrow Y$. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices $A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$, determine whether A and B are similar over $\mathcal {O}_{K}$, and if so, return a matrix $C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$ such that $B= CAC^{-1}$. We give explicit examples that show that the implementation of the latter algorithm for $\mathcal {O}_{K}=\mathbb {Z}$ vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
@article{10_1017_fms_2022_74,
     author = {Werner Bley and Tommy Hofmann and Henri Johnston},
     title = {Computation of lattice isomorphisms and the integral matrix similarity problem},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.74},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.74/}
}
TY  - JOUR
AU  - Werner Bley
AU  - Tommy Hofmann
AU  - Henri Johnston
TI  - Computation of lattice isomorphisms and the integral matrix similarity problem
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.74/
DO  - 10.1017/fms.2022.74
LA  - en
ID  - 10_1017_fms_2022_74
ER  - 
%0 Journal Article
%A Werner Bley
%A Tommy Hofmann
%A Henri Johnston
%T Computation of lattice isomorphisms and the integral matrix similarity problem
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.74/
%R 10.1017/fms.2022.74
%G en
%F 10_1017_fms_2022_74
Werner Bley; Tommy Hofmann; Henri Johnston. Computation of lattice isomorphisms and the integral matrix similarity problem. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.74

Cité par Sources :