Computation of lattice isomorphisms and the integral matrix similarity problem
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
Let K be a number field, let A be a finite-dimensional K-algebra, let $\operatorname {\mathrm {J}}(A)$ denote the Jacobson radical of A and let $\Lambda $ be an $\mathcal {O}_{K}$-order in A. Suppose that each simple component of the semisimple K-algebra $A/{\operatorname {\mathrm {J}}(A)}$ is isomorphic to a matrix ring over a field. Under this hypothesis on A, we give an algorithm that, given two $\Lambda $-lattices X and Y, determines whether X and Y are isomorphic and, if so, computes an explicit isomorphism $X \rightarrow Y$. This algorithm reduces the problem to standard problems in computational algebra and algorithmic algebraic number theory in polynomial time. As an application, we give an algorithm for the following long-standing problem: Given a number field K, a positive integer n and two matrices $A,B \in \mathrm {Mat}_{n}(\mathcal {O}_{K})$, determine whether A and B are similar over $\mathcal {O}_{K}$, and if so, return a matrix $C \in \mathrm {GL}_{n}(\mathcal {O}_{K})$ such that $B= CAC^{-1}$. We give explicit examples that show that the implementation of the latter algorithm for $\mathcal {O}_{K}=\mathbb {Z}$ vastly outperforms implementations of all previous algorithms, as predicted by our complexity analysis.
@article{10_1017_fms_2022_74,
author = {Werner Bley and Tommy Hofmann and Henri Johnston},
title = {Computation of lattice isomorphisms and the integral matrix similarity problem},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.74},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.74/}
}
TY - JOUR AU - Werner Bley AU - Tommy Hofmann AU - Henri Johnston TI - Computation of lattice isomorphisms and the integral matrix similarity problem JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.74/ DO - 10.1017/fms.2022.74 LA - en ID - 10_1017_fms_2022_74 ER -
%0 Journal Article %A Werner Bley %A Tommy Hofmann %A Henri Johnston %T Computation of lattice isomorphisms and the integral matrix similarity problem %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.74/ %R 10.1017/fms.2022.74 %G en %F 10_1017_fms_2022_74
Werner Bley; Tommy Hofmann; Henri Johnston. Computation of lattice isomorphisms and the integral matrix similarity problem. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.74
Cité par Sources :