An improvement on Schmidt’s bound on the number of number fields of bounded discriminant and small degree
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove an improvement on Schmidt’s upper bound on the number of number fields of degree n and absolute discriminant less than X for $6\leq n\leq 94$. We carry this out by improving and applying a uniform bound on the number of monic integer polynomials, having bounded height and discriminant divisible by a large square, that we proved in a previous work [7].
@article{10_1017_fms_2022_71,
     author = {Manjul Bhargava and Arul Shankar and Xiaoheng Wang},
     title = {An improvement on {Schmidt{\textquoteright}s} bound on the number of number fields of bounded discriminant and small degree},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.71},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.71/}
}
TY  - JOUR
AU  - Manjul Bhargava
AU  - Arul Shankar
AU  - Xiaoheng Wang
TI  - An improvement on Schmidt’s bound on the number of number fields of bounded discriminant and small degree
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.71/
DO  - 10.1017/fms.2022.71
LA  - en
ID  - 10_1017_fms_2022_71
ER  - 
%0 Journal Article
%A Manjul Bhargava
%A Arul Shankar
%A Xiaoheng Wang
%T An improvement on Schmidt’s bound on the number of number fields of bounded discriminant and small degree
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.71/
%R 10.1017/fms.2022.71
%G en
%F 10_1017_fms_2022_71
Manjul Bhargava; Arul Shankar; Xiaoheng Wang. An improvement on Schmidt’s bound on the number of number fields of bounded discriminant and small degree. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.71

Cité par Sources :