Products of derangements in simple permutation groups
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We prove that any element in a sufficiently large transitive finite simple permutation group is a product of two derangements.
@article{10_1017_fms_2022_69,
     author = {Michael Larsen and Aner Shalev and Pham Huu Tiep},
     title = {Products of derangements in simple permutation groups},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.69},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.69/}
}
TY  - JOUR
AU  - Michael Larsen
AU  - Aner Shalev
AU  - Pham Huu Tiep
TI  - Products of derangements in simple permutation groups
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.69/
DO  - 10.1017/fms.2022.69
LA  - en
ID  - 10_1017_fms_2022_69
ER  - 
%0 Journal Article
%A Michael Larsen
%A Aner Shalev
%A Pham Huu Tiep
%T Products of derangements in simple permutation groups
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.69/
%R 10.1017/fms.2022.69
%G en
%F 10_1017_fms_2022_69
Michael Larsen; Aner Shalev; Pham Huu Tiep. Products of derangements in simple permutation groups. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.69

Cité par Sources :