Products of derangements in simple permutation groups
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We prove that any element in a sufficiently large transitive finite simple permutation group is a product of two derangements.
@article{10_1017_fms_2022_69,
author = {Michael Larsen and Aner Shalev and Pham Huu Tiep},
title = {Products of derangements in simple permutation groups},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.69},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.69/}
}
TY - JOUR AU - Michael Larsen AU - Aner Shalev AU - Pham Huu Tiep TI - Products of derangements in simple permutation groups JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.69/ DO - 10.1017/fms.2022.69 LA - en ID - 10_1017_fms_2022_69 ER -
Michael Larsen; Aner Shalev; Pham Huu Tiep. Products of derangements in simple permutation groups. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.69
Cité par Sources :