Analytic torsion for log-Enriques surfaces and Borcherds product
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
We introduce a holomorphic torsion invariant of log-Enriques surfaces of index two with cyclic quotient singularities of type $\frac {1}{4}(1,1)$. The moduli space of such log-Enriques surfaces with k singular points is a modular variety of orthogonal type associated with a unimodular lattice of signature $(2,10-k)$. We prove that the invariant, viewed as a function of the modular variety, is given by the Petersson norm of an explicit Borcherds product. We note that this torsion invariant is essentially the BCOV invariant in the complex dimension $2$. As a consequence, the BCOV invariant in this case is not a birational invariant, unlike the Calabi-Yau case.
@article{10_1017_fms_2022_66,
author = {Xianzhe Dai and Ken-Ichi Yoshikawa},
title = {Analytic torsion for {log-Enriques} surfaces and {Borcherds} product},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.66},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.66/}
}
TY - JOUR AU - Xianzhe Dai AU - Ken-Ichi Yoshikawa TI - Analytic torsion for log-Enriques surfaces and Borcherds product JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.66/ DO - 10.1017/fms.2022.66 LA - en ID - 10_1017_fms_2022_66 ER -
Xianzhe Dai; Ken-Ichi Yoshikawa. Analytic torsion for log-Enriques surfaces and Borcherds product. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.66
Cité par Sources :