Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through $\overline {\partial }$-derivatives. To extend the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE techniques.
@article{10_1017_fms_2022_63,
author = {Gong Chen and Jiaqi Liu},
title = {Long-time asymptotics of the modified {KdV} equation in weighted {Sobolev} spaces},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.63},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.63/}
}
TY - JOUR AU - Gong Chen AU - Jiaqi Liu TI - Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.63/ DO - 10.1017/fms.2022.63 LA - en ID - 10_1017_fms_2022_63 ER -
Gong Chen; Jiaqi Liu. Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.63
Cité par Sources :