Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

The long-time behaviour of solutions to the defocussing modified Korteweg-de Vries (MKdV) equation is established for initial conditions in some weighted Sobolev spaces. Our approach is based on the nonlinear steepest descent method of Deift and Zhou and its reformulation by Dieng and McLaughlin through $\overline {\partial }$-derivatives. To extend the asymptotics to solutions with initial data in lower-regularity spaces, we apply a global approximation via PDE techniques.
@article{10_1017_fms_2022_63,
     author = {Gong Chen and Jiaqi Liu},
     title = {Long-time asymptotics of the modified {KdV} equation in weighted {Sobolev} spaces},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.63},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.63/}
}
TY  - JOUR
AU  - Gong Chen
AU  - Jiaqi Liu
TI  - Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.63/
DO  - 10.1017/fms.2022.63
LA  - en
ID  - 10_1017_fms_2022_63
ER  - 
%0 Journal Article
%A Gong Chen
%A Jiaqi Liu
%T Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.63/
%R 10.1017/fms.2022.63
%G en
%F 10_1017_fms_2022_63
Gong Chen; Jiaqi Liu. Long-time asymptotics of the modified KdV equation in weighted Sobolev spaces. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.63

Cité par Sources :