The moduli of sections has a canonical obstruction theory
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We give a detailed proof that locally Noetherian moduli stacks of sections carry canonical obstruction theories. As part of the argument, we construct a dualising sheaf and trace map, in the lisse-étale topology, for families of tame twisted curves when the base stack is locally Noetherian.
@article{10_1017_fms_2022_61,
     author = {Rachel Webb},
     title = {The moduli of sections has a canonical obstruction theory},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.61},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.61/}
}
TY  - JOUR
AU  - Rachel Webb
TI  - The moduli of sections has a canonical obstruction theory
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.61/
DO  - 10.1017/fms.2022.61
LA  - en
ID  - 10_1017_fms_2022_61
ER  - 
%0 Journal Article
%A Rachel Webb
%T The moduli of sections has a canonical obstruction theory
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.61/
%R 10.1017/fms.2022.61
%G en
%F 10_1017_fms_2022_61
Rachel Webb. The moduli of sections has a canonical obstruction theory. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.61

Cité par Sources :