Kernels of localities
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

We state a sufficient condition for a fusion system to be saturated. This is then used to investigate localities with kernels: that is, localities that are (in a particular way) extensions of groups by localities. As an application of these results, we define and study certain products in fusion systems and localities, thus giving a new method to construct saturated subsystems of fusion systems.
@article{10_1017_fms_2022_59,
     author = {Valentina Grazian and Ellen Henke},
     title = {Kernels of localities},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.59},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.59/}
}
TY  - JOUR
AU  - Valentina Grazian
AU  - Ellen Henke
TI  - Kernels of localities
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.59/
DO  - 10.1017/fms.2022.59
LA  - en
ID  - 10_1017_fms_2022_59
ER  - 
%0 Journal Article
%A Valentina Grazian
%A Ellen Henke
%T Kernels of localities
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.59/
%R 10.1017/fms.2022.59
%G en
%F 10_1017_fms_2022_59
Valentina Grazian; Ellen Henke. Kernels of localities. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.59

Cité par Sources :