Stability conditions on Calabi-Yau double/triple solids
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

In this paper, we prove a stronger form of the Bogomolov–Gieseker (BG) inequality for stable sheaves on two classes of Calabi–Yau threefolds, namely, weighted hypersurfaces inside the weighted projective spaces $\mathbb {P}(1, 1, 1, 1, 2)$ and $\mathbb {P}(1, 1, 1, 1, 4)$. Using the stronger BG inequality as a main technical tool, we construct open subsets in the spaces of Bridgeland stability conditions on these Calabi–Yau threefolds.
@article{10_1017_fms_2022_58,
     author = {Naoki Koseki},
     title = {Stability conditions on {Calabi-Yau} double/triple solids},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.58},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.58/}
}
TY  - JOUR
AU  - Naoki Koseki
TI  - Stability conditions on Calabi-Yau double/triple solids
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.58/
DO  - 10.1017/fms.2022.58
LA  - en
ID  - 10_1017_fms_2022_58
ER  - 
%0 Journal Article
%A Naoki Koseki
%T Stability conditions on Calabi-Yau double/triple solids
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.58/
%R 10.1017/fms.2022.58
%G en
%F 10_1017_fms_2022_58
Naoki Koseki. Stability conditions on Calabi-Yau double/triple solids. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.58

Cité par Sources :