Stability conditions on Calabi-Yau double/triple solids
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
In this paper, we prove a stronger form of the Bogomolov–Gieseker (BG) inequality for stable sheaves on two classes of Calabi–Yau threefolds, namely, weighted hypersurfaces inside the weighted projective spaces $\mathbb {P}(1, 1, 1, 1, 2)$ and $\mathbb {P}(1, 1, 1, 1, 4)$. Using the stronger BG inequality as a main technical tool, we construct open subsets in the spaces of Bridgeland stability conditions on these Calabi–Yau threefolds.
@article{10_1017_fms_2022_58,
author = {Naoki Koseki},
title = {Stability conditions on {Calabi-Yau} double/triple solids},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.58},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.58/}
}
Naoki Koseki. Stability conditions on Calabi-Yau double/triple solids. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.58
Cité par Sources :