On the Hardy–Littlewood–Chowla conjecture on average
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

There has been recent interest in a hybrid form of the celebrated conjectures of Hardy–Littlewood and of Chowla. We prove that for any $k,\ell \ge 1$ and distinct integers $h_2,\ldots ,h_k,a_1,\ldots ,a_\ell $, we have:

$ \begin{align*}\sum_{n\leq X}\mu(n+h_1)\cdots \mu(n+h_k)\Lambda(n+a_1)\cdots\Lambda(n+a_{\ell})=o(X)\end{align*} $

for all except $o(H)$ values of $h_1\leq H$, so long as $H\geq (\log X)^{\ell +\varepsilon }$. This improves on the range $H\ge (\log X)^{\psi (X)}$, $\psi (X)\to \infty $, obtained in previous work of the first author. Our results also generalise from the Möbius function $\mu $ to arbitrary (non-pretentious) multiplicative functions.
@article{10_1017_fms_2022_54,
     author = {Jared Duker Lichtman and Joni Ter\"av\"ainen},
     title = {On the {Hardy{\textendash}Littlewood{\textendash}Chowla} conjecture on average},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.54/}
}
TY  - JOUR
AU  - Jared Duker Lichtman
AU  - Joni Teräväinen
TI  - On the Hardy–Littlewood–Chowla conjecture on average
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.54/
DO  - 10.1017/fms.2022.54
LA  - en
ID  - 10_1017_fms_2022_54
ER  - 
%0 Journal Article
%A Jared Duker Lichtman
%A Joni Teräväinen
%T On the Hardy–Littlewood–Chowla conjecture on average
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.54/
%R 10.1017/fms.2022.54
%G en
%F 10_1017_fms_2022_54
Jared Duker Lichtman; Joni Teräväinen. On the Hardy–Littlewood–Chowla conjecture on average. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.54

Cité par Sources :