On the Hardy–Littlewood–Chowla conjecture on average
    
    
  
  
  
      
      
      
        
Forum of Mathematics, Sigma, Tome 10 (2022)
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Cambridge University Press
            
              There has been recent interest in a hybrid form of the celebrated conjectures of Hardy–Littlewood and of Chowla. We prove that for any $k,\ell \ge 1$ and distinct integers $h_2,\ldots ,h_k,a_1,\ldots ,a_\ell $, we have: 
for all except $o(H)$ values of $h_1\leq H$, so long as $H\geq (\log X)^{\ell +\varepsilon }$. This improves on the range $H\ge (\log X)^{\psi (X)}$, $\psi (X)\to \infty $, obtained in previous work of the first author. Our results also generalise from the Möbius function $\mu $ to arbitrary (non-pretentious) multiplicative functions.
            
            
            
          
        
      | $ \begin{align*}\sum_{n\leq X}\mu(n+h_1)\cdots \mu(n+h_k)\Lambda(n+a_1)\cdots\Lambda(n+a_{\ell})=o(X)\end{align*} $ | 
@article{10_1017_fms_2022_54,
     author = {Jared Duker Lichtman and Joni Ter\"av\"ainen},
     title = {On the {Hardy{\textendash}Littlewood{\textendash}Chowla} conjecture on average},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.54},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.54/}
}
                      
                      
                    TY - JOUR AU - Jared Duker Lichtman AU - Joni Teräväinen TI - On the Hardy–Littlewood–Chowla conjecture on average JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.54/ DO - 10.1017/fms.2022.54 LA - en ID - 10_1017_fms_2022_54 ER -
Jared Duker Lichtman; Joni Teräväinen. On the Hardy–Littlewood–Chowla conjecture on average. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.54
Cité par Sources :