A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd
Forum of Mathematics, Sigma, Tome 10 (2022)

Voir la notice de l'article provenant de la source Cambridge University Press

Let q be a nontrivial odd prime power, and let $n \ge 2$ be a natural number with $(n,q) \ne (2,3)$. We characterize the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems. This contributes to a programme of Aschbacher aiming at a simplified proof of the classification of finite simple groups.
@article{10_1017_fms_2022_53,
     author = {Julian Kaspczyk},
     title = {A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd},
     journal = {Forum of Mathematics, Sigma},
     publisher = {mathdoc},
     volume = {10},
     year = {2022},
     doi = {10.1017/fms.2022.53},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.53/}
}
TY  - JOUR
AU  - Julian Kaspczyk
TI  - A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd
JO  - Forum of Mathematics, Sigma
PY  - 2022
VL  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.53/
DO  - 10.1017/fms.2022.53
LA  - en
ID  - 10_1017_fms_2022_53
ER  - 
%0 Journal Article
%A Julian Kaspczyk
%T A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd
%J Forum of Mathematics, Sigma
%D 2022
%V 10
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.53/
%R 10.1017/fms.2022.53
%G en
%F 10_1017_fms_2022_53
Julian Kaspczyk. A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.53

Cité par Sources :