A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd
Forum of Mathematics, Sigma, Tome 10 (2022)
Voir la notice de l'article provenant de la source Cambridge University Press
Let q be a nontrivial odd prime power, and let $n \ge 2$ be a natural number with $(n,q) \ne (2,3)$. We characterize the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems. This contributes to a programme of Aschbacher aiming at a simplified proof of the classification of finite simple groups.
@article{10_1017_fms_2022_53,
author = {Julian Kaspczyk},
title = {A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd},
journal = {Forum of Mathematics, Sigma},
publisher = {mathdoc},
volume = {10},
year = {2022},
doi = {10.1017/fms.2022.53},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.53/}
}
TY - JOUR AU - Julian Kaspczyk TI - A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd JO - Forum of Mathematics, Sigma PY - 2022 VL - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.53/ DO - 10.1017/fms.2022.53 LA - en ID - 10_1017_fms_2022_53 ER -
%0 Journal Article %A Julian Kaspczyk %T A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd %J Forum of Mathematics, Sigma %D 2022 %V 10 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.1017/fms.2022.53/ %R 10.1017/fms.2022.53 %G en %F 10_1017_fms_2022_53
Julian Kaspczyk. A characterization of the groups $PSL_n(q)$ and $PSU_n(q)$ by their $2$-fusion systems, q odd. Forum of Mathematics, Sigma, Tome 10 (2022). doi: 10.1017/fms.2022.53
Cité par Sources :